Bayesian modeling of georeferenced cancer survival

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bayesian Sample Size Determination for Joint Modeling of Longitudinal Measurements and Survival Data

A longitudinal study refers to collection of a response variable and possibly some explanatory variables at multiple follow-up times. In many clinical studies with longitudinal measurements, the response variable, for each patient is collected as long as an event of interest, which considered as clinical end point, occurs. Joint modeling of continuous longitudinal measurements and survival time...

متن کامل

The Effect of Time-dependent Prognostic Factors on Survival of Non-Small Cell Lung Cancer using Bayesian Extended Cox Model

  Abstract Background: Lung cancer is one of the most common cancers around the world. The aim of this study was to use Extended Cox Model (ECM) with Bayesian approach to survey the behavior of potential time-varying prognostic factors of Non-small cell lung cancer. Materials and Methods: Survival status of all 190 patients diagnosed with Non-Small Cell lung cancer referring to hospitals in ...

متن کامل

Bayesian Analysis of Survival Data with Spatial Correlation

Often in practice the data on the mortality of a living unit correlation is due to the location of the observations in the study‎. ‎One of the most important issues in the analysis of survival data with spatial dependence‎, ‎is estimation of the parameters and prediction of the unknown values in known sites based on observations vector‎. ‎In this paper to analyze this type of survival‎, ‎Cox...

متن کامل

Bayesian Methods for Joint Modeling of Longitudinal and Survival Data with Applications to Cancer Vaccine Trials

Vaccines have received a great deal of attention recently as potential therapies in cancer clinical trials. One reason for this is that they are much less toxic than chemotherapies and potentially less expensive. However, little is currently known about the biologic activity of vaccines and whether they are associated with clinical outcome. The antibody immune measures IgG and IgM have been pro...

متن کامل

Bayesian modeling of pretransplant variables accurately predicts kidney graft survival.

INTRODUCTION Machine learning can enable the development of predictive models that incorporate multiple variables for a systems approach to organ allocation. We explored the principle of Bayesian Belief Network (BBN) to determine whether a predictive model of graft survival can be derived using pretransplant variables. Our hypothesis was that pretransplant donor and recipient variables, when co...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Annals of Cancer Epidemiology

سال: 2020

ISSN: 2616-4213

DOI: 10.21037/ace-19-32